from the island of Cyprus; a species closely allied to the former, from Asia Minor ; M. orientalis, Gmel., from Northern Persia; M. Vignei, Blyth, from Chorosan; M. arkal, Br., from Tureomana; and M. Purchelli, Blyth, from the Himalayas.

This genus, in the shape of the horns, shows an approach to the goats; and the above-naned species of A mmotragus and Eyoceros are closely allied to it. The former, being built like a sheep and having horns exactly like $\mathbf{i} /$ usimon cypries, wants the lacrumal fosse of the goats in front of the orbit in consequence of the small development of that bone; there is also no ridge on the nose. The only species inhabiting Aitica is the tragelaphus. The latter, besides the want of the lacrymal fosse, differs also in its structure, being built like a goat, in the short skull and the beard which is found on male specimens; in the shape of the horns only does it resemble Musimon. These latter are almost smooth, in which this form differs from the sheep as well as from the goats; it is the Cancasian species E. Pallasii, Rouill. Another species, which also possesses a beard and ovine horns, occurs in Cabul (Journ. Asiat. Soc. of Bengal, 1840, p. 440 ; Wagn. Fortsetz. v. Schreb. 1844, Suppl. iv. p. 540, note).
llaving in this way fixed (by help of comparative diagnosis) the position of the Turkestan sheep in systematic classification, I think it will be well to state their specific differences before going on to their more detailed description.
[To be continued.]

PROCEEDINGS OF LEARNED SOCIETIES.

ROYAL, SOCHETY.
March 9, 1876.-Dr. Günther, M.A., Vice-President, in the Chair.
"On the Development of the Crnstacean Embryo, and the Variations of Form exhibited in the Larre of 38 Genera of Podophthalmia." By C. Spence: Bite, F.R.S.

The author states that, although the general forms of several genera of Podophthalmous Crustacea are known, yet the details of their strncture have been so unsatisfactorily figured and described, that the value and importance of hereditary elements are incapable of being studied and appreciated.

Through Dr. Carpenter he received from Mr. Power an offer of a considerable number of larve of exotic species, together with
the parents from which they had been ohtained; in relation to which Mr. Power wrote:-
"Dean Sun, - I have to thank you for your kindness in answering my letter to Dr. Carphenter, and for the memoirs.
"My collection of Crustacea and the mieruscope-slides of the larvar are at present, and have been, packed up in Fort Lonis. Now 1 an again on detachment: and if heft here in peace for a fen months, 1 shall arrange my specimens and finish up the mieroscopie drawing.
"All my larvar are hatched in basin" (the only kind of aquaria my nomad life allows me to nsio) ; so each crab or prawn \&e. whose larva I posess is identified with its roung. And this raminds me that on reading Fritz Miller's paper in the 'Amals" (186t, vol. xiv. p. (14.t). I was much astomshed, as none of the prawns or prawn-allies whow young I have hatched show any such Neuplius form as shown in figures 1 id :3, \&c., but all I have observed a.s yet are hom like fig. A, or mear it.
"I have been quite unable to rear any crab-larve beyond a day or two after birth : whether they require moving water or not I do not know; but certainly, though I have kept the parents alive for several weeks in basins (the water changed once or twice in 24 hours) of salt water, the same method would not succeed with the larye. I then tried small aquaria, and signally failed again.
"I have not been in the neighbourhood of fresh water as yet, so have had no opportunities of ohserving the freshwater Crustacea, though there are a good many crab and shrimp forms. I have found two kinds of that curions parasitic crustacean which adheres like a little polypus, a mere bag with a peduncle, but containing hundreds of young Crustacea whose gemus 1 do not know, as 1 cannot find any account of them in Yin der Hoeven's " Koology **.
"If I succeed in getting posted to one of the regiments bere, my life will be more stationary, and I shall have far better chances of working my crab-hatchings.
" In Fritz Miiller's paper before referred to, I fancy that he has not hatched the different larvie mentioned. After reading the paper wery carefully, 1 could not help fancying that the various stages of development were not hatched through, but apecimens were captured at different times and perhaps larve of totally different species have been given as stages of the same animal. I say this with great doubt ; but reading the paper will, I think, bring every one to the same conclution. Thus he says, the unaltered Nicuplius form, probably the same in which the animal escapes from the egg, came under notice only once ; again, ‘This larva (taken on the 13th of January) is closely approathed by fonr others, probably belonyin, to the same swarm, which were taken at the same time (2tth Jamary):' and so on.
"To tow a net in these tropical seas and to examine all the microscopic Crustacea would give a most extraordinary assemblage
[* New genus allied to Sacerlina, which hatel) larse in the cirriped pupa stage.-C.S. B.]
of forms : but I doubt if it is so useful as tracing the steps of induviduals.

- I have not ret hatched the land Hermit-crabs, though I suppose they are much as the ordinary sea specimens, and they certainly spend their larval life in the sea.
" Pray excuse my rambling letter, and please let me know of any way in which I can be of any use to you in my humble dips into natural history.
" Lours very truly,
" Whimot İenry Power, " Staff-Surgeon, 4 th Regt., Lt. Inf."
Some time afterwards the author receired the promised collection, together with Mr. Powers drawings and notes. These have cuabled him to identify the parent forms of some known larva, and also to determine those of several unknown genera.

It has also led him to the comviction of a unity of character throughout the various forms and changes of Crustacea; that variety in form is never inconsistent with homological truth ; that parts suppressed or rendered abortive for want of use are never absolutely lost, and may be reproduced under conditions that may require them.

The eves of those Crustacea, such as $A l_{p}$ heus, that inhabit dark places are reduced in power according to the condition of their habitat. But these organs are, in their larral state, as well developed. if not more so, as any of those whose life is passed in the bright sunshine of the surface of the ocean.

The blind Didamia brought from the depth of four miles below the surface of the Atlantic by the dredges of the 'Challenger' differs in no respect from Polycheles, taken by Heller in the comparaticely shallow Adriatic sea. In the blind prawn from the Mammoth Care of America, and the sightless Nepherops of Formosa, the organs of vision are reduced to the smallest condition consistent with their retention ; and in the Cirripedes the eves are represented by their nerrous apparatus only.

The several forms of larva have not, in the prawn-allies, shorn any approach to the Tauplius state, as mentioned by Fritz Müller ; so that the author belieres that it must be confined to the genus Peneus alone among the Podophthalmia. Nor should it be forgotten that the Nauplius form has only been observed as a free-swimming animal.

The author has taken this opportunity of making a close examination into the earlier stages in the development of the embryo, and comparing the progress within the orum of some of the larvo that arrire at or near maturity before being hatched, with those of the larval forms that are hatched in a more immature condition; and he states that. as soon as the protoplasm assumes any thing like a definite plan, distinct lobes, corresponding in position with those of the several appendages in the Nouplius, together with an embronic or ocular spot, are present-that in the Nouplius forms they exist as deciduous appendages only, and are soon cast aside and replaced hy others more adapted to the wants of the adult existence.

In the embryo of other Crutaceat the anterior pair of tobesentarge in size with little alterntion of form, while the potherior two pairs are developal into appendaqes that have but a deciduons value, since they mover fulfil the oflie of permanent ograns, and are generally cast off with an early moult.
This is olsorvable within the ormm in Pellemon, 'rectergon, \&e., and also in the marsupial enbryo of M! Msis alter it has guited the ovitil.

The relation of these parts to the permanent organs the author has closely tracel, and believes that he has demonstrated that the thren pairs of mohite appendages in the eirripedal or Aiemplines form of larva homologize with the eves and two pairs of antemar, and not with the antemmand mandiblez, as stated by Fritz Mailler, Anton Dohrin, and others.
The author, moreover. contemds that the small pair of filamentary appentages seen on each side of the ocnlar spot, existing in the Numplii of Cirripedes, homologize with the peduncular appendave existing in the larva of Celignes, the arm-like appendages in the pupa-stage of Cirripedes, the peduncle of the staked Cirripedes, and probally also with the long multiarticulate, antematlike organs belonging to the fossil Pleryyotus.

He also demonstrates the origin of the nerves in a mass of cellular material that reaches from one extremity of the embro to the other. This divides into parts eorresponding to the various somites into which the amimal divides. These masses gradually separate from each other as the animal increases in size, and coucentrate into the several ganglia that form the great nerrous chain.

The author also shows the origin of the permanent organs of vision, and the manner in which the number of lenses increases with the growth of the animal, and traces the origin of several of the internal viscera and their mode of growth.

He also fignres, in minute detail, the larvie of the following genera (those in itulics are from British specimens, while all the others are from the collection sent to him by Mr. Power):-

Palcmon fluvialis, n. sp.

- squilkt, Leach.

Crangon miguris, Leach.
Hymenocera, Ifeller.
Alpheus obesimanus, Dana.
Homaralphens, n. g.
Homarus murinus, Leach.
Palinurus mulgaris.
Astarus juwiatilis.
quilla.
Porcellana rugosa.
-I lonyicornis.
Galathea.
I'agurns tibicen.

- elegans.
- Bernhardus.

Clibinarus
Trichis.
(ielasimus.
(Cyelograpsus.

Libinia.
Mensethius.
Stenorhynchus.
Mithrux.
Trupezia pectinata.
_ferruginea.
Pilummus.
Melia tessellata.
Carpelodes rugipes.
Actinurus setifer.
Jantho Lamarckii.
Actara obesa.
Thia?
Liomera.
Pirimela?
Thalamitn.
Achelone.
Euriphia.
Thaluesina
Carcimocyalus, 11. is.

April G, $1876,-$ Dr. J. Dalton Ifnoker, C.B., President, in the Chair.
"On the Structure of a Species of Millepore occurring at Talniti, Society Islands." 13y H. N. Mosimer, Naturalist to the 'Challenger' 1:xpedition.

In a paper treating mainly of the structure of Heliopora coerulea, commmicated to the Royal society in the autum of 1875, some account was giver of results arrived at from the examination of two species of Millepror obtained at Bermuda and at Zamboangan, Philippines; and in that paper a summary of the literature concerning the tabulate corals generally was given. The present paper, to be considered to a certain extent a continuation of the last, gives an account of the structure of a species of Willepmere obtained at Tahiti, Society Islands. The author commences by expressing his obligations to his colleagne Mr. J. Murray, who obtained living specimens of the Millepora and handed them over to him with the zooids in the expanded condition for examination, and who further, having deroted some time to the study of the coral, gave him valuable information with regard to sereral points in its structure.

No Millepora appears to have been hitherto known to ocenr at Tahiti. The name of the species of the one the structure of which is described in the paper was not ascertained. It resembles M. tuberculosa, as described by Milne-Edwards*, in ontward form, but differs from it in having the calicles of two kinds disposed on the surface of the corallum in regular separate systems, in this respect resembling more closely M. plicrta, M. foliatu, and M. Eihrenberyii as described by the same author.

The coral was examined in the fresh condition, and also preserved in alcohol, chromic acid, and glycerine, and treated with osmic acid. Hardened specimens were decalcified and examined br means of sections. The corallum is a spongy mass composed of more or less contorted trabeculæ of calcareous matter, which is disposed in a series of thin layers following the contours of the surface, and representing successive additions by growth. Within these layers ramify a series of canals which give off branches and subbranches, the whole ramitications being intimately connected with one another, and with the calicular cavities, by a network of smaller channels. The main canals are sometimes large enough to be easily seen by the naked eye, and run for as great a distance on the surface of the corallnm as $1 \frac{1}{2}$ inch. This system of branching canals is held to be characteristic of the coralla formed by the hydroid genus Milloporn, distinguishing it from all other coralla. The calicles are of two kinds, small and large. They are disposed on the surface of the corallum in irregularly circular systems. A large calicle occupies the centre of each system, and is surrounded by a ring of smaller calicles, usually from five

[^0]to cight in momber. In histological strmeture, as also in ehmomical composition * the cerallat of the gems Millepore siem to show no matked differences from Amhozoan coralla.

The \%ooids are of two kiads. The ons, short amd stout, acerppies the larerer central calioles of the systems, has from fome to six shom kobled tentacles, and is provided with a month and worain gastric cells, chosely resemhling those figmed by Allaman as ocemering in Cermmerie implemet. Tha other liand acenpies the smaller calicles, is longer and more slemder than the monthed zooid, has from live to twenty tentades, and no trace of a month. The nsmal munher of tentales in the monthles zond is abont iwelve to lifteren. The tentacles are larger than in the montherl zooid, and disposed at irrembar interats along the bong. They show the tansuerse striation, or apparent septa, so chamateristic of the tentaces of hydroids. 'They hase spheroidal heads composed of massen of theerdcells.

The zoods of hoth linds are provided with well-marked longitudinal muscular tiberes, which are dispoeed in bundles, and are attached inferiorly to the vessels of the hydrophyton which join the somatic cavity at the base of the zooids. Cirenlar muscular fibres are possibly also present. As in Melimpores. only a thin layor at the surface of the coral is livine
'The soft parts of the hydrophyton consist of a network of canals and ressels occupying the corresponding canals in the corallum. The canals are composed of an ectoderm and an endoderm. The ectoderm rests on a thin layer of membrame. It is mainly composed of fusiform finely granular cells with an oral nuclens, but is much modified in certain regions. In the upper part of the living layer its cells are abundantly converted into the parent cells of threadcells, and on the actual surface into a layer of prismatic cells showiug at the very surface hexagonal ontlines. This layer is believed to be continmous orer the whole onter surlace of the coral. It is contimued down into the calicular cavities, and in the contracted condition almost eluses their orifiers. The endodnrm consists of two elementa-fellow pigmented cells closely similar to those of other hydroids, and small transparent highly refracting globules. The pigmented cedls are abundant in the somatie cavities of the zooids, and in the canals and wessels of the hydrophyton.

Ther impart a bright yellow colour to the tips of the tubereles of the living coral. The canal-system of the hydrophyton ana-tomoses most freely with the somatic cavities of the zooirls, and establish's a free communication between them. Two kinds of thread-cells are present. The one is of the pecoliar form occurring only in Mydrozan, viz, that which has in the expanded condition a short, wille, bladder-like structure at the base of the thread next

[^1]the cell, which bladder is armed with three spines set in one whorl. In Millepora the spines are mmsually long and set at right angles to the thread. This kind of thread-cell alone occurs in the tentacles: it oecurs also more sparingly in the hydrophyton.

The other kind of thread-cell is larger and ovoidal in form, closely resembling that figured by Allman as occurring in Gemmorio implexa. These thread-cells are confined to the hydrophyton. Ther form densely set zones around the bases of the zooids.

The other species of Millepore examined appear to agree in all essential particulars with that occurring at T'ahiti. They have mouthed and monthless zooids, but these are not arranged in regnlar systems. They have the same two kinds of thread-cells, with a similar distribution. The Tahitian Millepore, like the others examined, is infested by a parasitic fungus, which exists in the soft superficial tissues, as well as in the substance of the corallum, and has a decided green tint.

GEOLOGICLL SOCIETY.

March 2.2, 1876.—Professor P. Martin Dunean, M.B., F.R.S., President, in the Chair.
"On the Triassie Strata which are exposed in the Cliff Sections near sidmouth, and a note on the occurrence of an Ossiferous Zone containing Bones of a Labyrinthodon." By H. J. Johnston Lavis, Esq., F.G.S.

The author described the base of the cliffs east of Sidmouth as composed of the Marl which is the uppermost subdivision of the Trias in South Deron, capped in Littlecomb Hill and Dunscomb Hill by Greensand and Chalk, and in Salcombe Hill by Greensand alone. In the valley of the Sid it is largely exposed at the surface. Close to the mouth of the Sid the Upper Sandstone erops out beneath the marl, forming a eliff overhanging the river. To the west of Sidmouth there is a low projecting eliff, the Chit roek, formed also of the Upper Sandstone; and at the western end of this is a fault which has given the Chit rock an upthrow of at least 40 and perhaps of $S 0$ feet, since it has no marl capping it, and in its lithological character it resembles the middle part of the Upper Sandstone. To this point the dip is to the east ; but westward of the fault the dip is at first to the west for about half a mile, when the sandstone reappears with an easterly dip, having formed a synelinal curve. It is overlain by Marl and Greensand in Peake and High-Peake Hills, which are eapped with Chalk gravels. West of High-Peake Hill the Sandstone forms the whole eliff. The author described the general characters presented by the Triassic beds in the section under notice, and mentioned the oceurrence at about 10 feet from the top of the Sandstone of a peculiar series of beds, composed of coarse sandstone, containing seattered nodules of marl from the size of a pea to that of a hen's egr, together with numerous

[^0]: * Hist. Nat. des Coralliaires, pl. F 3. figs. 1a, 1 1 。

[^1]: - Sitrueture amb Classifieation of Zoophytó, hy J. D). Dima (Philadelphia,
 1. 105.

